Nilai lim_(x→π/8)⁡ (sin^2⁡ 2x-cos^2 ⁡2x)/(sin⁡ 2x-cos ⁡2x)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to \frac{\pi}{8}} \ \frac{\sin^2 2x - \cos^2 2x}{\sin 2x - \cos 2x} = \cdots \)

  1. \( -\sqrt{2} \)
  2. \( -\frac{1}{2} \sqrt{2} \)
  3. \( 0 \)
  4. \( \frac{1}{2} \sqrt{2} \)
  5. \( \sqrt{2} \)

Pembahasan:

\begin{aligned} \lim_{x \to \frac{\pi}{8}} \ \frac{\sin^2 2x - \cos^2 2x}{\sin 2x - \cos 2x} &= \lim_{x \to \frac{\pi}{8}} \ \frac{(\sin 2x - \cos 2x)(\sin 2x + \cos 2x)}{\sin 2x - \cos 2x} \\[8pt] &= \lim_{x \to \frac{\pi}{8}} \ (\sin 2x + \cos 2x) \\[8pt] &= \sin \left(2 \cdot \frac{\pi}{8}\right) + \cos \left(2 \cdot \frac{\pi}{8}\right) \\[8pt] &= \sin \frac{\pi}{4} + \cos \frac{\pi}{4} \\[8pt] &= \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} = \sqrt{2} \end{aligned}

Jawaban E.